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We investigate theoretically the coupling between a cavity resonator and the cyclotron transition of a
two-dimensional electron gas under an applied perpendicular magnetic field. We derive and diagonalize an
effective quantum Hamiltonian describing the magnetopolariton excitations of the two-dimensional electron
gas for the case of integer filling factors. The limits of validity of the present approach are critically discussed.
The dimensionless vacuum Rabi frequency �0 /�0 �i.e., normalized to the cyclotron frequency �0� is shown to
scale as ��nQW�, where � is the fine structure constant, nQW is the number of quantum wells and � is the filling
factor in each well. We show that with realistic parameters of a high-mobility semiconductor two-dimensional
electron gas, the dimensionless coupling �0 /�0 can be much larger than 1 in the case of ��1, the latter
condition being typically realized for cyclotron transitions in the microwave range. Implications of such
ultrastrong coupling regime are discussed.
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I. INTRODUCTION

The study of light-matter coupling in confined geometries
has been in the last two decades a very interesting topic in
atomic and condensed-matter physics. The realization of ex-
tremely high-quality mirrors and the ability to manipulate
atomic states with extremely long lifetimes has made pos-
sible the observation of the strong light-matter coupling re-
gime. In this regime, the coupling exceeds the losses and it is
therefore possible to spectroscopically resolve the so-called
vacuum Rabi splitting.1,2 Strong light-matter coupling has
been observed in various solid-state systems, ranging from
microcavity embedded quantum wells3,4 to superconducting
circuits coupled to transmission line resonators.5 In solid-
state systems, thanks to the collective nature of the excita-
tions, it is possible to go further the standard strong-coupling
regime and to enter a new regime, where the vacuum Rabi
frequency is not only larger than the loss rate, but becomes
comparable or larger than the bare frequency of the un-
coupled excitations.6–12 The ultrastrong coupling regime is
interesting, for example, for nonadiabatic cavity QED phe-
nomena reminiscent of the dynamical Casimir effect.13–16

Moreover, it can lead to a dramatic modification of the quan-
tum ground-state �vacuum� properties.6,12

In this paper, we investigate the coupling of the magnetic
cyclotron transition of a two-dimensional electron gas
�2DEG� to the quantum field of a cavity resonator. We
show that the dimensionless vacuum Rabi frequency �R /�0
can be largely enhanced with respect to the case of intersub-
band transitions in a 2DEG without magnetic field. In par-
ticular, this is the case in the regime of high filling factors,
obtained with relatively weak magnetic fields and large elec-
tron densities, which can be obtained in state-of-the-art high-
mobility 2DEGs. We derive the second quantized Hamil-
tonian for such a system in the case of integer filling factor �
and derive an effective Hamiltonian describing the cavity
magnetopolariton excitations of the 2DEG. We show that

since �R /�0�1, the diamagnetic A2 term of the quantum
light-matter coupling Hamiltonian becomes dominant in
such a system. The present work is relevant not only for the
fundamental quantum electrodynamical properties of a
2DEG in an unconventional regime. It may have important
implications also in the low-frequency magnetotransport
properties of the 2DEG embedded in a cavity resonator.

The paper is structured as follows. In Sec. II, we intro-
duce in detail the system and show why the magnetic cyclo-
tron transition can be ultrastrongly coupled to the vacuum
field of a cavity. In Sec. III, we present the second quantized
quantum light-matter Hamiltonian for the system �details
about the derivation are given in Appendix C�. In Sec. IV, we
diagonalize an effective bosonic Hamiltonian to describe the
magnetopolariton excitations of the 2DEG and show the re-
sulting mode dispersions. Conclusions and perspectives are
drawn in Sec. V.

II. PHYSICAL SYSTEM AND SCALING OF COUPLING

We will consider a system consisting of multiple doped
semiconductor quantum wells �QWs� in presence of a mag-
netic field B along the z axis �perpendicular to the QW
plane�. The QWs are embedded in a wirelike cavity resona-
tor, as depicted in Fig. 1, that confines the electromagnetic
modes along two directions �z and y�.

In presence of a magnetic field, the electrons occupy
highly degenerate bands �see Fig. 2�, the well-known Landau
levels �LLs�, separated by the cyclotron energy equal to ��0,
where �0=eB / �m�c� is the cyclotron frequency �m�

�0.068m0 is the effective electron mass of the conduction
band in GaAs�. The magnetic length, associated to the fun-
damental Landau level, is l0=�� / �m��0�, while the degen-
eracy of each LL �taking into account for the electron spin� is
N=S / �	l0

2�, where S is the surface of the sample.
Here, we will consider the case of an integer filling factor

�, i.e., electrons fill completely the first � LLs �the LL index
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goes from n=0 to n=�−1�. Consequently, �=
2DEGS /N,
where 
2DEG is the electron density per unit of area in each
QW. In this section, we wish to show a back-of-the-envelope
calculation of the vacuum Rabi frequency for such a system
and compare it to the bare cyclotron transition frequency �0.
This simple calculation will allow the reader to grasp the
essential quantitative features and key parameters. A com-
plete and rigorous derivation will be presented in Appendi-
ces. As we are interested in the observation of high filling
factor LLs, we have to consider a sample at cryogenic tem-
perature. In the rest of the paper we will thus perform calcu-
lations at T=0, even if our results are expected to be robust
while the thermal energy does not exceed the cyclotron tran-
sition energy �kBT���0�.

Due to Pauli blocking and harmonic oscillator selection
rules, only electrons populating the level n=�−1 will partici-
pate to the light-matter coupling. Given that the typical cy-
clotron radius for an electron in LL n is r� l0

�n, the electric
dipole associated to the transition from level n=�−1 to level

n=� will be d�el0
��. Hence, larger filling factors produce a

larger dipole �in a way reminiscent to Rydberg atomic states
with large orbital principal quantum number�. However, if
N2DEG=
2DEGS is the number of electrons in the 2DEG, only
the number N2DEG /� in the level n=�−1 is optically active.
It is known that in the presence of a collection of identical
dipoles, the collective vacuum Rabi frequency is propor-
tional to the square root of the number of dipoles.17 Hence,
the collective excitation of the 2DEG enhances the light-
matter coupling by a factor �N2DEG /�. If nQW quantum wells
are identically coupled to the field, an additional enhance-
ment of �nQW can be obtained �we consider here that the
QWs are not electronically coupled; this is therefore equiva-
lent to simply increase the density of the 2DEG�.

The vacuum Rabi frequency is therefore ��res=d�Evac

��N2DEGnQW /�, where Evac is the electric field associated to
the cavity vacuum fluctuations. We will call V=LzS the vol-
ume of the cavity with Lz being the direction orthonormal to
the 2DEG and S=LxLy the surface of the 2DEG plane �cf.
Fig. 1�. Now, if we consider a cavity mode resonant with the

cyclotron transition, we have Evac�� ��0

LzS
, where  is the

dielectric constant of the cavity spacer ��13 for GaAs
structures�. Finally, we find

�res

�0
� el0

��� �

�0LzS
�N2DEGnQW/� . �1�

If we consider a half-wavelength cavity, i.e., Lz=�0 /2 and
�0= 2	

�0

c
� , given that 
2DEG	l0

2=�, we obtain

�res

�0
� ��nQW� , �2�

where �= e2

�c � 1
137 is the fine structure constant. Hence, the

dimensionless vacuum Rabi coupling depends on the small
fundamental constant � on the number of QWs and on the
filling factor in each QW. For very large filling factors and a
large number of QWs it is thus possible to have

�res

�0
�1. For

a given density of electrons, since ��1 /B, we can thus al-
ways increase the coupling by lowering the magnetic field
intensity, since for B→0, �→+�. One the other hand, for a
given magnetic field, the filling factor increases with increas-
ing the electron density, and so does the coupling strength.
Of course, this description makes sense only if the cyclotron
resonance is well resolved �i.e., not quenched by the broad-
ening�. For example, as shown by the experimental work in
Ref. 18, in GaAs 2DEG with a relatively high mobility ��
=1.6�106 cm2 V−1 s−1�, it is possible to have at the same
time very high filling factors ���100� with a well resolved
cyclotron resonance for a magnetic field B=0.01 T and a
transition frequency in the microwave range �f0=

�0

2	
�30 GHz�.

III. QUANTUM HAMILTONIAN

A. General considerations

In condensed-matter systems consisting of a collection of
two-level systems, in the low excitation limit, it is generally

FIG. 1. �Color online� Sketch of a cavity resonator embedding
nQW identical QWs, each containing a two-dimensional electron gas
�2DEG� in the xy plane. An uniform and static magnetic field B is
applied along the z axis.

FIG. 2. �Color online� Sketch of Landau levels with an integer
filling factor � ���1 is the regime considered in this paper�. The
cyclotron transition between levels �−1 and � is resonantly coupled
to cavity mode quantum field.
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possible to describe the collective excitations as bosons.
Starting from the Hamiltonian in terms of the electronic fer-
mion operators and of the photonic boson operators �see Ap-
pendices�, we have derived the effective bosonic Hamil-
tonian describing the magnetopolariton excitations. In this
case, the Hamiltonian is exactly solvable by mean of a
Hopfield-Bogoliubov diagonalization. This procedure has
been already applied to other systems: for example, exciton
polaritons in bulk materials19 and quantum wells,20,21 inter-
subband polaritons6 and polariton in atomic gases.22 Among
the different possible geometries, we chose to treat here the
case of a photonic asymmetric wire �Lx�Lz�Ly�. This will
permit us to treat the continuous dispersion along the x axis,
while keeping only few discrete modes along the z axis and
neglecting completely all the modes along the y axis except
the lowest one, whose intensity profile is constant over the
sample surface. While this choice is motivated both by the
simplicity of the resulting Hamiltonian and by considerations
of experimental feasibility �using transmission line resona-
tors� the extension to other one-dimensional geometries does
not present any particular difficulty. For sake of simplicity,
we will consider the quantum wells to be placed in the
middle of the photonic wire, at z=Lz /2.

The reader familiar with the literature on polaritons will
notice that here, even in the resonant case �one photonic
mode resonant with the cyclotron frequency� we will not
neglect the higher-lying photonic modes, as often done in the
literature. We will instead formally consider all of them, cut-
ting then the resulting infinite matrix in order to retain
enough modes to be at convergence. While considering only
one photonic mode remarkably simplifies the algebra, it is
not a valid approximation in the system under consideration.
The spacing between photonic branches being constant, in
the resonant case, the condition �0 /�0�1 implies that also
the higher photonic modes are coupled to the transition.

B. Coulomb interactions

As well known in the context of the fractional quantum-
Hall effect, the Coulomb interaction can play a crucial role in
two-dimensional systems of electrons under magnetic field.
It is now well understood that the role of interactions is com-
pletely different depending on whether one considers the
case of integer or fractional filling factor. In the case of frac-
tional filling, correlation can become crucial, because a rear-
rangement of a many-electron configuration within a par-
tially filled Landau band does not cost any kinetic energy. As
it has been said in the previous sections, we consider here
only the case of an integer filling factor � in the peculiar
weak magnetic field regime such that ��1. In this weak
magnetic field limit, we have e2 / �l0����0: hence, one
might a priori expect a significant impact of Coulomb inter-
actions, which could produce, for example, a mixing of the
Landau levels. However, it has been proved23 that screening
leads to a renormalized Coulomb potential which abruptly
drops at the distance around two cyclotron radii. Moreover,
the effective interaction is much smaller than ��0 and this
allows us to treat only the electrons belonging to level n
=�−1 �which is the only one optically active�. In addition,

Kohn’s theorem24 states that the cyclotron resonance is not
affected at all by electron-electron interactions as far as we
consider a translationally invariant system. This holds in the
absence of disorder and for a photonic wave vector q=0. In
the geometry we consider �cf. Secs. III A and III C�, the
photonic wave vector always satisfies the condition that ql0
�1 �even far from resonance�. Indeed, since for ��1 the
vacuum Rabi frequency �0 can be even much larger than the
cyclotron frequency �0, the light-matter interaction in the
cavity system appears to be by far the most dominant inter-
action.

C. Cavity quantized electromagnetic field

In the considered geometry, the vector potential can be
written as

A�r� = A0�r� + Aem�r� , �3�

where A0�r� is the applied uniform magnetic field directed
along the z direction �A0=−Byux in the Landau gauge that
we will use in this paper� and Aem is the contribution asso-
ciated to the cavity quantum field. We introduce the photon
wave vector,

q = �qx

qy

qz
� =�

qx

	ny

Ly

	nz

Lz

� , �4�

where qx can vary continuously while qy and qz are quantized
�ny and nz are integer values�.

In the following, we will take the length Lz such that the
mode corresponding to qx=0, qy =0, and qz= 	

Lz
is close to

resonance with the cyclotron transition. As explained in Sec.
III A, the condition Ly�Lz allows us to neglect all the modes
with qy �0. To simplify the notation, we will thus omit the
qy =0 index. The electromagnetic vector potential is then
written as

Aem�r� = 	
qx,nz

�2	�c2

�qx,nz

�aqx,nz
Uqx,nz

+ aqx,nz

† Uqx,nz

� � , �5�

where the operator aqx,nz
is the bosonic annihilation operator

for a photon belonging to the mode labeled by the wave
vector 
qx ,qz=

	nz

Lz
�. The spatial shape Uqx,nz

of the modes �the
derivation is presented in Appendix A� is given by

Uqx,nz
=�2

V
eiqxx�

0

sin�	nz

Lz
z

0
� . �6�

Being our quantum wells positioned in the middle of the
photonic cavity, at z=Lz /2, only the odd photonic modes will
be coupled to the electron gas. Moreover we introduce the
matrix notation,
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aqx
� �aqx,1aqx,2 ¯ aqx,nz

¯�T. �7�

aqx
is thus a vector containing the photon annihilation opera-

tors for all the modes with different values of qz=
	nz

Lz
.

D. Light-matter coupled system

In the Landau gauge each electron state is indexed by
three quantum numbers n, k, and m �see Appendix B for
details�. n indexes the different Landau levels, k is the mo-
mentum component along x and labels the different electrons
in each Landau level. m indexes the different subbands in the
quantum well. Actually we show in Appendix C that given
the condition LQW�Lz, we have the selection rule m=m�,
meaning that we can safely neglect intersubband transitions
and thus drop the m index. Beside, one could argue that all
the energies in play are much smaller than the intersubband
gap which reinforces this approximation.

In order to write the second quantized Hamiltonian for the
coupled light-matter system, we will thus introduce the fer-
mionic operator cn,k

�j�†, that creates an electron with quantum
number k in the nth Landau level in the jth quantum well.
We omit the spin quantum number because the optical tran-
sition conserves the electron spin, hence both spin channels
contribute equally to the light-matter coupling: it will simply
appears as an added degeneracy. We also neglect the Zeeman
splitting of the LLs �the cyclotron transition frequency is the
same for both spin channels�.

Analogously to the case of intersubband transitions,6 the
bright mode creation operator associated to the cyclotron
transition is given by

bqx

† =� �

nQW
2DEGS
	
j,k

c�,k+qx

�j�† c�−1,k
�j� . �8�

The prefactor is a normalization constant chosen such that, in
the dilute regime under consideration, these operators are
approximately bosonic, �bqx

,bqx�
† ���qx,qx�

. The bright mode is

the collective excitation of the two-dimensional electron gas
which is directly coupled to the cavity photon mode.

After some calculations that are detailed in Appendix C,
we get the following Hamiltonian:

H = HLandau + Hint + Hdia + Hcavity , �9�

where

HLandau = 	
qx

��0bqx

† bqx
,

Hint = 	
qx

i��qx

T aqx
�bqx

† − b−qx
� + 	

qx

i��qx

T aqx

† �b−qx

† − bqx
� ,

Hdia = 	
qx

aqx

T Dqx
a−qx

+ aqx

T Dqx
aqx

† + aqx

†TDqx
aqx

+ aqx

†TDqx
a−qx

† ,

�10�

and

Hcavity = 	
qx

aqx

†T��qx
aqx

, �11�

which represents the energy of the cavity quantum electro-
magnetic field. Note that we have omitted the zero-point en-
ergy that does not play any role here and we have defined

�qx
= diag��qx,1�qx,2 ¯ �qx,nz

¯� �12�

as the diagonal matrix containing the photonic mode ener-
gies. HLandau is the energy of the collective excitation elec-
tronic excitations. The vector �qx

and the matrix Dqx
contain

the coupling constants corresponding to Hint and Hdia, re-
spectively. �qx

is the collective vacuum Rabi frequency and
comes from the resonant coupling between the cavity pho-
tons and the 2DEG. Hdia �diamagnetic term by analogy with
atomic physics� comes from the squared vector potential
Aem

2 . In Appendix C, we present the detailed derivation of
these coupling constants. The final result is

�qx
=�2	e2�0nQW
2DEG

m�Lz
�̄qx

−1/2,

Dqx
=

�qx
�qx

T

�0
�13�

with

�̄qx

−1/2 = diag��qx,1
−1/2,0,− �qx,3

−1/2,0,�qx,5
−1/2,0,− �qx,7

−1/2, . . .�T,

�14�

and the zeros at the even positions in Eq. �14� are given by
the fact that, as apparent in Eq. �6�, only odd photonic modes
are coupled to the electron gas.

If we consider only the resonant photonic mode, with fre-
quency �q̄x,n̄z

=�0, then the corresponding normalized
vacuum Rabi frequency reads

�res

�0
=�2�nQW�

	�
. �15�

Apart from a geometric form factor on the order of 1, we see
that

�res

�0
���nQW� as in Eq. �2�, obtained with a back-of-the-

envelope scaling calculation. From Eq. �13� it is clear that,
for

�res

�0
�1, we have Dres��res. In the ultrastrong coupling

regime, we conclude that the A2 term becomes thus dominant
over the vacuum Rabi coupling term.

Because this Hamiltonian is quadratic in terms of aqx
and

bqx
operators, it can be exactly diagonalized using a general-

ized Hopfield transformation.21 We introduce the normal
modes pqx

�i� and pqx

†�i� �magnetopolaritons� defined as

pqx

�i� = Wqx

�i�aqx
+ Xqx

�i�bqx
+ Yqx

�i�a−qx

† + Zqx

�i�b−qx

† .

Given the bosonicity of aqx
and bqx

operators, also the mag-
netopolariton operators satisfy the Bose commutation rule
�pqx

�i� , pqx�
†�i��=�i,i��qx,qx�

, where the index i runs over all the po-

lariton branches. The condition for the total Hamiltonian to
be diagonal in terms of magnetopolariton operators is
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�pqx

�i�,H� = ��qx

�i�pqx

�i� �16�

and the eigenvalue problem takes the form

Mqx
vqx

�i� = ��qx

�i�vqx

�i�, �17�

where ��qx

�i� correspond to the magnetopolariton energies, vqx

�i�

is the vector �Wqx

�i� ,Xqx

�i� ,Yqx

�i� ,Zqx

�i��T and Mqx
is the infinite

Hopfield matrix that is given by

Mqx
=�

�qx
+ 2Dqx

i�qx
− 2Dqx

i�qx

− i�qx

T
�0 i�qx

T 0

2Dqx
i�qx

− �qx
− 2Dqx

i�qx

i�qx

T 0 − i�qx

T − �0

� .

�18�

IV. RESULTS

By diagonalizing the matrix in Eq. �18�, we are now able
to calculate the magnetopolariton energy dispersions in the
multimode case. For sake of simplicity, we have taken the
lower photonic mode to be resonant with the cyclotron tran-
sition. In Fig. 3, we present results of the dimensionless
vacuum Rabi frequency �res /�0 as a function of the filling
factor � for different values of the number nQW of quantum
wells. It is important to point out that the dimensionless cou-
pling depends only on ��nQW�. Hence, different values of
the two-dimensional electron gas density 
2DEG, magnetic
field B, and semiconductor effective mass m�, can give rise
to the same normalized vacuum Rabi coupling �res /�0, pro-
vided that the filling factor � stays constant. For example, a
filling factor of �=100 with a number of QWs of nQW
=100 gives a dimensionless vacuum Rabi coupling that takes

the impressive value �res /�0�3.6. This kind of parameters
can be obtained using GaAs high-mobility samples with cy-
clotron frequencies in the microwave range, as already dis-
cussed at the end of Sec. II.

In the simulations of Figs. 4–6, we have considered a
field B=40 mT and a cavity thickness Lz=0.25 cm. Con-
cerning a practical experimental implementation, there are
two possibilities: an external resonator or an integrated cav-
ity �more appealing but technologically much more challeng-
ing�. One could then place two metallic mirrors at the top
and bottom of the structure in order to confine the electro-
magnetic field in the z direction while confinement in the y
direction would be provided by impedance mismatch be-
tween GaAs and air sides. In this kind of resonators25 quality
factor between 10 and 100 can be obtained, which is more
than enough in the present ultrastrong coupling regime. In-
deed, high-quality factors are necessary when the vacuum
Rabi frequency is much smaller than the transition frequency
but for very large couplings this is not the case. Concerning
the electronic structure, standard high-mobility 2D electron
gas samples usually consist of an only one quantum well
because the mobility can be enhanced and there is no need of
multiple quantum well structures for in-plane transport mea-
surements. However, it has been reported that systems con-
sisting of more than 150 QWs with a decent in-plane mobil-
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n
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FIG. 3. �Color online� The dimensionless vacuum Rabi coupling
�res /�0 versus the filling factor � for different values of the number
nQW of quantum wells. We consider only the photonic mode 
qx

=0,nz=1� at resonance with the transition. Precisely, the resonance
is defined such that �qx=0,nz=1=�0. Other parameters are given in
the text.
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FIG. 4. �Color online� Thick solid colored lines: normalized
frequency of the first four magnetopolariton branches as a function
of the 2D electron gas density 
2DEG in the case where the energy of
the first cavity mode 
qx=0,nz=1� is resonant to the cyclotron tran-
sition. Thin black solid lines depict the energies of the photonic
branches, which are not coupled to the cyclotron transition �for the
selection rules, see description in the text, in particular Eqs. �13�
and �14��. The two vertical straight lines indicate the densities

2DEG=2�1010 cm−2 and 
2DEG=2�1011 cm−2 �giving a dimen-
sionless vacuum Rabi coupling �res /�0�0.8 and �res /�0�2.5,
respectively�: the corresponding frequency dispersions as a function
of the wave vector qx are plotted in Figs. 5 and 6. Parameters: m�

=0.068m0 �GaAs effective mass�; B=40 mT �giving a cyclotron
frequency �0=100 GHz rad�; nQW=50 and Lz=0.25 cm which is
chosen in such a way that �qx=0,nz=1=�0. With these parameters, a
good numerical convergence is obtained for a cutoff number of
photonic modes ��7.
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ity have been successfully made for studying heat transport
in the quantum-Hall regime26 �for calorimetric measure-
ments, one quantum well does not give enough signal�.
Hence, there should be no fundamental limitation toward
systems with a reasonably high mobility and a reasonably
large number of quantum wells, an optimized compromise
depending on the growth procedure and frequency of the
cyclotron transition. In particular, since the normalized
vacuum Rabi frequency is proportional to ��nQW, a very
large number of wells can compensate smaller filling factors.

For example, by using magnetic fields of a few tesla, the
cyclotron transition is in the terahertz �THz� range: in this
regime samples with several hundredths of doped quantum
wells in THz resonators are already within the present state-
of-the-art.

In Fig. 4, the thick solid lines represent the normalized
energies of the first four magnetopolariton branches as a
function of the two-dimensional electron gas density 
2DEG
in the case where the energy of the first cavity mode 
qx
=0,nz=1� is equal to the cyclotron transition energy. Note
that the thin solid lines depict the energies of the photonic
modes that, due to the considered geometry, are not coupled
to the cyclotron transition. Figures 5 and 6 depict a typical
dispersion of the normalized frequencies of the first four po-
lariton branches as a function of the wave vector qx for den-
sities 
2DEG=2�1010 cm−2 and 
2DEG=2�1011 cm−2, re-
spectively.

It is worth pointing out that for very large couplings the
frequency of the lower branch asymptotically tends to zero.
This suggests that this kind of cavity excitations could affect
significantly the magnetotransport properties of a cavity em-
bedded two-dimensional electron gas in the low-frequency
regime.

V. CONCLUSIONS AND PERSPECTIVES

In conclusion, we have presented a quantum model de-
scribing the ultrastrong coupling between a cavity resonator
and the cyclotron transition of a two-dimensional electron
gas. The present approach holds for the case of integer filling
factors. We have determined the second quantization light-
matter Hamiltonian in terms of the electronic fermionic op-
erators and of the cavity photon operators. We have derived
and diagonalized an effective bosonic Hopfield-type Hamil-
tonian describing the magnetopolariton excitations. The ul-
trastrong coupling regime characterized by a vacuum Rabi
frequency much larger than the cyclotron transition fre-
quency can be achieved with high filling factors, which are
compatible with state-of-the-art GaAs high-mobility two-
dimensional electron gas and cyclotron transitions in the mi-
crowave range. In our present approach, we have not consid-
ered the case of noninteger filling factors: the nature of the
magnetopolariton excitations may be qualitatively and quan-
titatively affected by a partially filled Landau band, an issue
that needs to be explored in the future.

The role of Coulomb interaction between carriers and ba-
sic approximations have been critically discussed in Sec.
III B. In the future, it will be interesting to explore the im-
pact of the ultrastrong coupling on the magnetotransport of
properties of a cavity embedded two-dimensional electron
gas. In fact, the energy of the lower magnetopolariton branch
can become much smaller than ��0, meaning that the elec-
tron spectral function can be affected by the coupling to the
cavity vacuum field as well as the low-frequency transport.
In particular, the Shubnikov de Haas oscillations, the nonlin-
ear response to applied microwave field,27–29 could be
strongly influenced by the presence of the cavity.
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APPENDIX A: SPATIAL SHAPE OF THE CAVITY MODES

The general form for the electromagnetic vector potential
is

Aem�r� = 	
q,�

�2	�c2

��q
�aq,�uq,� + aq,�

† uq,�
� � , �A1�

where the operator aq,� is the bosonic annihilation operator
for a photon with polarization �� 
1,2� belonging to the
mode labeled by the wave vector,

q = �qx

qy

qz
� =�

qx

	ny

Ly

	nz

Lz

� = q�sin � cos �

sin � sin �

cos �
� , �A2�

where qx can vary continuously while qy and qz are quantized
�ny and nz are integer values�. The spatial shape uq,� of the
modes is given by30

uq,1 = Neiqxx�i sin�qzz�sin�qyy�cos � cos �

sin�qzz�cos�qyy� cos � sin �

− cos�qzz�sin�qyy�sin �
� ,

uq,2 = Neiqxx�− i sin�qzz�sin�qyy�sin �

sin�qzz�cos�qyy�cos �

0
� . �A3�

The normalization constant N reads

N = ��
2

V
if qy = 0 or qz = 0

2
�V

otherwise. � �A4�

As it has been written in Secs. III A and III C, the condition
Ly�Lz allows us to neglect all the modes with qy �0. From
Eq. �4�, we see that qy =0 implies �=0 and consequently
only the polarization �=2 is present. Omitting the qy =0 and
�=2 indexes, we can see from Eqs. �A1�–�A3� that the elec-
tromagnetic vector potential and the spatial shape of the cav-
ity modes are given by Eqs. �5� and �6�, respectively.

APPENDIX B: LANDAU LEVELS IN THE LANDAU
GAUGE

The one electron wave functions in the Landau gauge
�A0=−Byux�, reads

�n,k,m�r� = �k�x��n�y − y0��m�z� , �B1�

where

�k�x� =
1

�Lx

eikx,

�n�y − y0� =
1

�2nn!l0
�	

Hn� y − y0

l0
e−�y − y0�2/2l0

2
,

y0=kl0
2 is the so-called guiding center position depending on

k, �m�z� is the confinement wave function of the mth conduc-
tion subband of the quantum well and Hn is the Hermite
polynomial of degree n. With the chosen gauge the wave
function is thus factorized along the three axis in a plane
wave, an harmonic oscillator wave function and a
confinement-dependent function. For an infinitely deep quan-
tum well with width LQW, we can find an analytic form for
the confinement-dependent function

�m�z� =�� 2

LQW
cos�m	�z −

Lz

2


LQW
� m odd

� 2

LQW
sin�m	�z −

Lz

2


LQW
� m even.� �B2�

As explained in Sec. III D, we omit both the spin quantum
number, the Zeeman splitting of the LLs, and the m index
that do not play any role here.

Knowing that k=2	nx /Lx with nx�N, the many-body
electronic ground state reads

�F� = �
j=1

nQW

�
n=0

�−1

�
nk=1

N

cn,k
�j�†�0� , �B3�

where �0� is the empty conduction band state and cn,k
�j�† is the

fermionic operator creating an electron in the nth Landau
level with wave vector k along x in the jth quantum well.

APPENDIX C: SECOND QUANTIZATION
HAMILTONIAN

The minimal coupling Hamiltonian describing the elec-
trons coupled to the electromagnetic field reads

H = 	
i

1

2m��pi +
e

c
A�ri��2

+ Hcavity , �C1�

where the sum runs over all the electrons �in all the quantum
wells� and Hcavity describes the free electromagnetic field.
Developing the square in Eq. �C1� and writing A�r�=A0�r�
+Aem�r� �as in Eq. �3��, we can identify four different terms
in the Hamiltonian, namely,

H = HLandau + Hint + Hdia + Hcavity . �C2�

HLandau=	 jHLandau
�j� and Hint=	 jHint

�j�. Hcavity describes the
free quantum cavity electromagnetic field and has been ex-
pressed in terms of second quantized photon operators in Eq.
�11�. Hdia comes from the A2 term. HLandau

�j� is the Hamil-
tonian describing the electrons in the jth quantum well, in-
teracting with the static magnetic field, giving rise to the
Landau levels. Finally Hint

�j� describes the interaction of the
electrons in the jth quantum well with the cavity electromag-
netic field. In the following we will express HLandau

�j� , Hint
�j�, and
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Hdia in terms of the aqx
and cn,k

�j� operators introduced in Secs.
III C and III D and Appendix B.

HLandau
�j� is by construction a diagonal operator because its

eigenmodes are chosen as a basis for the transition in second
quantization formalism, namely,

HLandau
�j� = 	

n,k
n��0cn,k

�j�†cn,k
�j� . �C3�

As already mentioned in Sec. III D, because the electronic
excitations are collective, we have to express HLandau

�j� in the
subspace of the collective excitations. By calculating the en-
ergy of such collective excitations �i.e., the matrix element
�F�bqx

HLandaubqx�
† �F�, where �F� is the electronic Fermi ground

state defined in Appendix B�, it is straightforward to find in
such subspace HLandau can be replaced by 	qx

��0bqx

† bqx
,

where we have omitted a constant energy term.
In order to express Hint in terms of second quantized op-

erators, we have to calculate the matrix elements of the form

�n,k,m�p · Aem�r��n�,k�,m�� � 	
qx,nz

�m�sin�	nzz/Lz��m��

��n�py�n���aqx,nz
�k�eiqxx�k��

+ aqx,nz

† �k�e−iqxx�k��� , �C4�

where �n ,k ,m� is the state of an electron in the mth subband
and nth Landau level with momentum k �see B�. As already
mentioned if we assume that LQW�Lz, it comes from the
first term in the right-hand side of Eq. �C4� that m=m�.

The matrix elements for the transition between Landau
levels read

�n�py�n�� =
im��0l0

�2�n − n��
��n� + 1�n,n�+1 + �n��n,n�−1� .

Therefore, we get the harmonic oscillator selection rule n�
=n�1; transitions such that �n�−n��2 are strictly forbid-
den.

The integration over the x direction gives rise to the mo-
mentum conservation and we obtain the result

Hint
�j� = 	

qx,k
i��qx

T aqx
�c�,k+qx

�j�† c�−1,k
�j� − c�−1,k

�j�† c�,k−qx

�j� �

+ 	
qx,k

i��qx

T aqx

† �c�,k−qx

�j�† c�−1,k
�j� − c�−1,k

�j�† c�,k+qx

�j� � .

The coupling constant �we are using the same notation as in
Sec. III D� is given by

�qx
=�2	e2�0�

�m�SLz
�̄qx

−1/2. �C5�

Introducing the bosonic bright mode creation operator as de-
scribed in Sec. III D,

bqx

† =� �

nQW
2DEGS
	
j,k

c�,k+qx

�j�† c�−1,k
�j� , �C6�

we can check that the interaction Hamiltonian Hint can be
exactly rewritten as it is given in Eq. �10� by taking

�qx
= �qx

�nQW
2DEGS

�
.

Analogously in order to calculate Hdia we need the matrix
elements

�n,k,m�Aem
2 �n�,k�,m�� �	qx,qx�,nz,nz�

�m�sin�	nzz/Lz�sin�	nz�z/Lz��m��
aqx,nz

† aqx�,nz�
�n,k�ei�qx�−qx�x�n�,k��

+ aqx,nz
aqx�,nz�

† �n,k�e−i�qx�−qx�x�n�,k�� + aqx,lz
† aqx�,nz�

† �n,k�e−i�qx�+qx�x�n�,k�� + aqx,lz
aqx�,nz�

�n,k�ei�qx�+qx�x�n�,k��� .

�C7�

Given that the quantum well size LQW�Lz, the integral along
z gives the same selection rule as for Hint: m=m� so
�m�sin�	nzz /Lz�sin�	nz�z /Lz��m��
�sin�	nz /2�sin�	nz� /2��m,m�.

On the other hand, the matrix elements along the other
directions x and y can be factorized. For example, the term

�n ,k�ei�qx�−qx�x�n� ,k�� can be factorized as

�k�ei�qx�−qx�x�k���n,k�n�,k�� . �C8�

The second term of the previous equation is then given by
the overlap integral In,n��k ,k��,

In,n��k,k�� = �
0

Ly

dy�n�y − y0�k���n��y − y0�k��� . �C9�

Assuming Ly� l0 �which is realistic being l0�0.1 �m for
�0=52 GHz rad� we get

In,n��k,k�� � �
−�

+�

dy�n�y��n��y − �y0� �C10�

with �y0=y0�k��−y0�k�. We can then use the useful expan-
sion of the harmonic oscillator wave functions31

�n�y − �y0� = 	
m=0

n!

m!
� 1/2�m−ne− /2Ln

m−n� ��m�y� , �C11�

where  =
�y0

2

2l0
2 and Ln

m−n is the Laguerre polynomial of degree
n and index m−n. Substituting Eq. �C11� into Eq. �C10�, we
obtain
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In,n��k,k�� �
n�!

n!
� 1/2�n−n�e− /2Ln�

n−n�� � . �C12�

Because of the Gaussian dependence �e−�y0
2/4l0

2
, In,n��k ,k��

exhibits a peak centered at �y0=0 as sharp as l0. Thanks to
the definition y0�k�= l0

2k and the condition that l0�Ly, we can
consider approximatively that In,n��k ,k����k,k�. In addition,

due to the orthonormality of the function �n, setting k=k� �or
equivalently �y0=0� into the integral �C10� implies that
In,n��k ,k����n,n�.

Hence, setting k=k� into the integral given by the first
term of Eq. �C8�, we obtain the corresponding selection rules
on qx and qx�. Note that in the case of the previous example,
we get that qx�=qx. Finally, we find that Hdia is given by Eq.
�10� with the corresponding coupling constants.
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